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A B S T R A C T

In many naturally fractured reservoirs, fractures play a crucial role in their flow and transport properties. An
approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network
(DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object
simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and
polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependence
relationships that may exist between geometric properties of fractures (direction, length, aperture), that is, each
property is simulated independently.
In this work a method for modeling such dependencies by copula theory is introduced. In particular, a
nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented.
The application of this method is illustrated in an example which shows high agreement between data and
simulation, both graphically and in its descriptive statistics, both marginally and jointly, and in the DFN as a
whole.
1. Introduction

Fracture network modeling is an important step in reservoir charac-
terization because fractures can be a barrier, or they can be connected so
that they form a flow path –in which case permeability estimation is one
of the goals of accurate fracture modeling.

Thanks to the increasing computational power, the Discrete Fracture
Network (DFN) approach is becoming more feasible. This approach
consists in applying an object-based stochastic simulation method, also
known as boolean simulation method (Stoyan et al., 1987; Cacas et al.,
2001; Chil�es and Delfiner, 2012), where fractures are represented as
simplified geometric objects (line segments in 2D).

The underlying statistical dependence among natural fracture prop-
erties is usually nonlinear and complex; therefore, traditional statistical
techniques based on assumptions of linearity are too restrictive for
modeling these dependence relationships. For example, it has been re-
ported (Balankin et al., 2001; Olson, 2007) that fracture aperture and
length follow heavy tail distributions which usually results in highly
nonlinear dependencies not only between them but also with other
variables, such as fracture direction. In particular, the relation direction-
length is not usually considered because of lack of suitable models but it
Torres), mdiazv@imp.mx (M.A. Díaz

2017; Accepted 8 June 2017
is important within a dynamic context. In some special cases, when the
underlying theory assumption holds, transformations can be applied to
reduce the existing dependence to an approximately linear one, but al-
ways at the costs of a back-transformation bias (Seber and Wild, 2003;
Miller, 1984; Box, 1971). Transformations also pose the additional effort
of selecting the transformation more suitable for the dataset, and vali-
dating that the underlying theory assumptions hold.

It is common practice to simplify the dependence among random
variables to a scalar number: a correlation coefficient. The problem with
this oversimplification is that two datasets could have the same corre-
lation coefficient value, but their dependence structure could be quite
different (Kat, 2003; Embrechts et al., 1999; King, 1986; Chernih
et al., 2007).

Copula theory has shown to be a very flexible framework to model
general dependencies, and this is the approach we use in this work. One
of the advantages of copula approach is that univariate marginal distri-
butions and the dependence relationship can be modeled separately
(Sklar, 1959).

A valid copula function is an approximation of the empirical copula
by Bernstein polynomials (Deheuvels, 1979; Sancetta and Satchell,
2004). This nonparametric approach is simple to use, is almost
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independent of the type of dependence relation, and has shown to
reproduce a broad spectrum of dependencies.

One of the shortcomings of Bernstein copulas is that they are not
naturally periodic as fracture directions are, but Carnicero et al. (2013)
adapted this approach to take into account directional data.

Although Bernstein copulas have been applied for non-directional
dependencies (Hern�andez-Maldonado et al., 2014, 2012; Erdely and
Díaz-Viera, 2009, 2012), there is no previous work on explicitly
modeling fracture direction-length dependencies in the petro-
leum industry.

In this work, we show and extend a methodology to model and
simulate fracture direction-length relationships, which in turn allows
more realistic discrete fracture models.

The application of this method is illustrated in an example which
shows high agreement between data and simulation. The univariate
nonparametric approach to model the marginal distribution of direction
mimics pretty well the periodic behavior of fracture directions, and even
shows the skewed parts in the rose diagram. For lengths, it is also
observed a coherent match between data and simulation. The Bernstein
copula approach reproduces tightly the dependence structure of direc-
tion and length. There is also good correspondence of the DFN and the
simulated DFN. On the contrary, results using the standard methodology
fails to reproduce the expected bivariate behavior.

2. Fracture networks in a geological and petrophysical modeling
framework for reservoir characterization

As a first approach, every reservoir should always be treated as
fractured (Nelson, 2001).

2.1. Overview of the general integral methodology

The geological and petrophysical modeling of reservoirs, also known
as static reservoir characterization, aims to describe and quantify the
geometry of the reservoir depositational environment, its structure and
stratigraphic relationships, rock types and their property distributions. A
proper geological petrophysical model is essential to subsequent tasks
such as fluid flow simulation, reserve estimation, and production opti-
mization. There exists a well-established methodology to develop such
models in the published literature. In Cosentino (2001) a general inte-
grated methodology is described, while in Deutsch (2002) and Caers
(2005) the application of geostatistical methods for reservoir character-
ization are presented.

A geological and petrophysical model typically involves two stages.
Firstly, it is established a quantitative geological model, and subse-
quently a petrophysical model is built based on the former. Below, there
is a brief description of the most important methodological aspects that
are considered in geological and petrophysical modeling (Casar-Gonz�alez
et al., 2012; Díaz-Viera et al., 2012).

Geological models take the following stages: the structural, strati-
graphic, lithological and (optionally) reservoir heterogeneities. Some
authors (Nelson, 2001) suggests that the last stage (reservoir heteroge-
neities) must be mandatory too.

The Structural model is the identification of the basic geometric
framework of the hydrocarbon trap; it includes the definition of the
boundaries. The stratigraphic model is responsible for the definition of
the internal structure of the reservoir; it is about the construction of a
stratigraphic grid and the definition of the main reservoir flow units. The
lithological model consists in the classification or grouping of facies
types in lithotypes or petrophysical classes.

Reservoir heterogeneities are small scale geological features that
are considered to have a significant impact on the fluid flow. Examples of
such heterogeneities are vugs and fractures. In particular, in naturally
fractured carbonate reservoirs, fractures play a major role since they are
assumed to affect the main flow path.

The aim of the petrophysical model basically is to populate each
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facies type with their corresponding petrophysical properties so as to
reproduce their representative statistical characteristics. Of course,
reservoir heterogeneities must be considered in this step.

Currently, there are a variety of geostatistical stochastic simulation
models for reservoir characterization (Deutsch, 2002). The most
commonly used models are of two types:

1. Cell-based models: A variable is considered to be simulated as a
realization of a continuous random function. Examples of variables
modeled as continuous random function include porosity and fracture
intensity.

2. Object-based (or boolean) models: These models can also be
considered as marked point processes, in the sense that they are based
on a point process and marks are the objects attached to the points of
the process (Stoyan et al., 1987; Chil�es and Delfiner, 2012). It is also
considered as a boolean random set model which corresponds to the
intuitive idea of the union of randomly located objects. Many
geological features/structures can be modeled using this approach
considering them as simplified geometric objects. For example,
channels can be represented by sinusoids, lobes by half-ellipsoids, and
fractures by line segments in 2D and polygons in 3D.

2.2. Discrete fracture network modeling for fractured reservoirs

Fractures are very important because they can enhance or block the
fluid flow (Nelson, 2001; Casar-Gonz�alez et al., 2014, Appendix A).
Depending on the fluid flow directions, if fractures are open and con-
nected, they enhance the fluid flow. Otherwise, if closed, fluid cannot
pass through them. Therefore, fractures are always important to be
considered because of their influence in the dynamic nature of
the reservoir.

Notice that the common approach to reservoir characterization (see
section 2.1) is complemented by this section, for instance, fractures can
be related to facies or structures. Some facies are more prone to fracking
than others.

Although there exists several approaches (mainly continuum and
discrete) to model and simulate fracture networks (Dershowitz et al.,
2004; Dowd et al., 2007; Bonneau et al., 2013; Chil�es, 2005; Jing, 2003),
the Discrete fracture network (DFN) approach is the most common
approach to represent fracture networks in porous media, and particu-
larly, the most used approach in Naturally Fractured Reservoirs.

Discrete fracture network approach considers fractures as simplified
geometric objects of lower dimension, usually line segments in 2D and
polygons in 3D. Notice that this approach explicitly represents individ-
ual fractures.

The 2D case is important because usually the available information to
characterize fracture systems is in this way. For example, outcrops, thin
films, satellite image data. In this case, and in this paper, individual
fractures are modeled as line segments and therefore fracture networks
are simplified as networks of line segments.

DFNs are a particular example of the stochastic boolean model (see
section 2.1) which is made up of spatial point locations (Poisson
germs) on which simplified geometric objects are implanted (Lan-
tu�ejoul, 2002, chap. 13). This model allows to independently model a)
the spatial concentration of fractures which is measured by its intensity
(mean fractures per unit area), and b) the simplified fracture proper-
ties (direction, length). Due to the appealing characteristics of the
DFN approach, it is used by many scientists and implemented in
software such as Fracman (Golder associates), Petrel (Schlumberger),
FracaFlow (Beicip Franlab), and dfnWorks (los Alamos National
Laboratory).

Notice that we have adopted a probabilistic approach since it is usual
that the data available in the reservoir is not exhaustive, i.e. there is no
perfect knowledge of the fractures in the study area. Fracture charac-
terization and simulation can then be made through the statistical
analysis of the available data or by geological models.
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The objects may not be deterministic, so they could also be proba-
bilistically modeled. In the latter case, each fracture is generated sto-
chastically so that their spatial and geometric properties are given by
probability distribution functions.

The common approach is that fracture locations are independent of
each other, i. e., it is assumed a uniform spatial distribution. Also, it is
assumed that fracture properties are independent among them (Elmo
et al., 2014; Bourbiaux et al., 2002; Zellou et al., 2003; Gringarten, 1997;
Adler and Thovert, 1999), therefore, no joint distribution is modeled.

In summary, a real fracture system of a Naturally Fractured Reservoir
is modeled as a network of simplified discrete fractures, each fracture
having its own direction, length and position.

3. A methodology for discrete fracture network modeling

In a discrete fracture network model using object-based stochastic
simulation approach fractures are usually represented as line segments in
2D and as polygons in 3D. Formally, it is convenient to divide the object-
based fracture model in three parts: spatial, directional and linear. The
spatial part consists in the distribution of points where are fractures
localized and it is modeled by a stochastic point process. While, the
directional part consist in the fracture orientation angles and are modeled
as directional random variables. And, the linear part are the fracture
geometric dimensions, such as, length, width and aperture, which are
modeled as usual random variables.

In general, any applied statistical modeling requires an Exploratory
Data Analysis (EDA) to obtain the basic statistical properties of data,
which is often carried out combining visual and quantitative methods.
Any EDA consists mainly of plots and descriptive statistics, for example,
histograms, scatterplots, sample mean, skewness and correlation co-
efficients, to mention a few. This preliminar study is very important since
it allows to understand the data behavior and consequently to propose
the most appropriate model for them.

Each fracture property differs in nature; hence, each one requires a
specific analysis. For example, fractures locations, which give intensity,
can be analyzed with the theory of point process and with geostatistical
tools; fractures directions are analyzedwith directional statistics; fracture
length, aperture and other attributes, such as porosity, are studied with
usual statistics.

The common approach is to analyze each variable independently:
univariate exploratory data analysis. Sometimes joint (multivariate)
exploratory data analysis is carried out but usually no multivariate model
is established, nor joint simulation is performed. This paper offers a
methodology to fill this gap for the non-spatial properties: direction
and length.

The workflow for each part of the object-based model is
described below.

3.1. Spatial

To analyze the spatial position of fractures, a measure of fracture
location and concentration is needed. Although there are several such
measures for 2D fractures (Nelson, 2001), and within the boolean
framework, the geometrical centers of the line segments are commonly
used as their coordinate positions. These midpoints are also adopted to
this paper.

The statistical tool to analyze spatial point locations is the theory of
Point Process (Lantu�ejoul, 2002). Within such theory, the test of Com-
plete Spatial Randomness (CSR) is the most basic one, and it attempts to
assess if the points have the same probability to occur in each
spatial location.

The theory of point process also allows to test if the fractures centers
can be modeled with a uniform (CSR), regular, or cluster point process. If
uniform, it is also called homogeneous Poisson process. An algorithm to
generate simulations can be consulted in Lantu�ejoul (2002).

Although points are discrete entities, their concentration is assumed
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to be a continuous positive (maybe random) function called intensity,
which is the mean number of points per unit area.

When the CSR test is rejected, or in some cases when it is not clearly
rejected, geostatistical analyses have shown that are still useful tools to
understand the behavior of fracture intensity.

To use geostatistics, the idea is to think of the fracture intensity as a
realization of a continuous random function (Díaz-Viera et al., 2013). In a
grid, an estimate of fracture intensity is made by means of box-counting,
i. e. counting the number of fractures per grid cell. As a result, a dataset of
number of fractures per unit area is obtained. Once again, an EDA must
be carried out over the fracture intensity data in order to check if the grid
is adequate.

Since the spatial aspect of the DFN is not the focus of this paper, it will
be used a homogeneous Poison process.

3.2. Directional

Direction is another property of fractures. From a probabilistic
viewpoint, this kind of data can be analyzed with directional statistics. In
the case of single directions Θ, the data is called circularwhen in ½0;360Þ,
and axial when in the interval ½0;180Þ (Mardia and Jupp, 2000; Jam-
malamadaka and SenGupta, 2001; Fisher, 1995).

Circular data arise in various ways. The two main ways correspond to
the two principal circular measuring instruments, the compass and
the clock … Data of a similar type arise as times of year (or times of
month) of appropriate events.

Mardia and Jupp (2000).

i.e. data with a periodicity p can be analyzed as circular data by lin-
early rescaling its range to fit in the interval ½0;2πÞ. Some authors
(Mardia and Jupp, 2000, sec. 1.1; Fisher, 1995) suggest doubling the
angles for 2D axial data, as fracture strike, in order to apply the circular
statistics theory for analysis, modeling and simulation. Finally, the
generated results can be back-transformed to their original range.

All circular random variables must satisfy the same properties of
linear random variables (Casella and Berger, 2002), but besides must
satisfy the periodicity constraint on its probability density function f:

f ðθÞ ¼ f ðθ þ 2πÞ; θ 2 ½0; 2πÞ (1)

The natural statistical model for the distribution function of di-
rections is the von Mises distribution which can be thought of as similar
to the normal distribution: unimodal, symmetric, with one parameter for
concentration/dispersion and one for the mean.

Notice that rescaling the ’directional’ variable actual range to ½0; 2πÞ
is a required artifact because the directional statistics theory was devel-
oped for such range. Besides, there is a small number of models for cir-
cular distribution functions. From these models, frequently the only
model computationally available is unimodal and symmetric (vonMises),
which constraint further the scope of its usage.

In this work it is used a univariate nonparametric approach (Mu~noz
P�erez and Fern�andez-Palacín, 1987) to model fracture direction that does
not require any data rescaling, is data-driven, can model non-symmetric
data, is easier to fit and simulate than parametric models, and can mimic
a much wider spectrum of dataset behavior than the few directional
parametric models.

One limitation of using the approach of Mu~noz P�erez and Fern�andez-
Palacín (1987) is that is not naturally periodic. Hence, it can only be
satisfactorily used in cases where there exists enough data around the
limits of the data range. The usage in this paper is justified by assuming
enough direction values greater than, but close 0�; and lower than, but
close to 180�. For this approach to completely respect the range of the
dataset, it is used the directional version of the empirical distribution
function (Mardia and Jupp, 2000, p. 100).
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3.3. Linear

Fracture length is a linear random variable. While directional data
ranges in ½0;2πÞ, linear data is defined in the real line ℝ.

In particular, common distribution functions for fracture length are
right skewed such as lognormal, power law, Weibull, exponential,
gamma and Pareto distributions (Bonnet et al., 2001; Bour and Davy,
1997; Gudmundsson et al., 2011). Although these distributions are
parametric, nonparametric length distributions can be used, too. In sec-
tion 4.4 it is used the nonparametric Bernstein-Kantorovich quantile
function (Mu~noz P�erez and Fern�andez-Palacín, 1987).

Other linear variables, which can be also fracture properties, include
aperture, porosity and permeability, and are assigned as an attribute (not
graphically) to the fracture.

3.4. Directional-linear dependence modeling

Although several (mostly deterministic) models have been proposed
for the relation fracture length-aperture (Bonnet et al., 2001, sec 6.4.2,
eq. (25); Klimczak et al., 2010; Olson, 2003) none of them provide a
dependence measure. To solve this gap, it could be used a circular-linear
measure of dependence between direction and length (Kempter et al.,
2012; Johnson and Wehrly, 1978; Mardia and Sutton, 1978; Mar-
dia, 1976).

For circular-linear data there exists linear correlation coefficients
(Kempter et al., 2012; Johnson and Wehrly, 1977, 1978) similar to
Pearson's r product-moment correlation coefficient, but not all relation-
ships are linear, and this assumption can be very restrictive. On the other
hand, analogous to Spearman's rank correlation coefficient ρ, Mardia
(1976) suggests a nonparametric (rank) correlation coefficient Un that

… it is invariant under homeomorphisms (continuous trans-
formations with continuous inverses) of the line and of the circle. An
important consequence is that, under independence of X and Θ, the
distribution of Un does not depend on the marginal distributions of X
and Θ. The test of independence based on Un rejects independence for
large values of Un.

Mardia and Jupp (2000, chap. 5).

To evaluate and compare quantitatively some results, a scaled version
of Un that lies in ½0;1�, ρM (Mardia and Jupp, 2000, p. 247) will be used.

Although correlation coefficients are sometimes useful, it is also well
documented the restrictive nature of correlation coefficients to capture
the whole dependence structure between random variables.

In this context, the classical option for circular-linear dependence
modeling would be an estimation approach using usual regression; but it
is well known that regression underestimates variance and extreme
values of data. Linear regression for linear-linear data is the most widely
known regression technique but usually requires data to be transformed,
which introduces bias to the results when back-transformed (Seber and
Wild, 2003; Miller, 1984; Box, 1971). The same bias applies to circular-
linear regression.

A second option is a simulation approach from a parametric bivariate
distribution Hðx; yÞ, for example, a combination of a von Mises distri-
bution for the circular and a Gaussian distribution for the linear data
resulting in a joint distribution on the surface of the cylinder ½0;2πÞ � R.
This last approach is not very flexible since it is limited to a combination
of a few classical circular and linear distributions.

To model circular-linear dependencies a more modern, general and
flexible approach consists of copula theory tools.

4. Bernstein copula approach of circular-linear dependence
modeling

As important part of the methodology, in this section are exposed the
benefits, presented the mathematical foundation, developed the
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numerical model, given the simulation algorithm and explained the
computational model of Bernstein copula theory in the context of
circular-linear data, such as fracture direction and length.
4.1. Conceptual model

From a statistical viewpoint, fracture strike data is usually modeled as
a circular random variable, while fracture length is represented as a
linear random variable. Thus, the strike-length relationship is modeled as
a circular-linear probability distribution function.

For this kind of data, the periodicity condition of the directional
variable must be included in the joint distribution function. For example,
sometimes it is desirable to jointly model fracture direction and fracture
length; in such case, the periodic condition must be added to the random
vector modeling.

An alternative to direct bivariate Hðx; yÞ modeling is to generate the
circular-linear distribution function through copula theory. Copula
modeling is a very general and flexible approach to build multivariate
distributions, since copulas are functions that capture the underlying
dependence structure among variables.

Sklar's Theorem separates each univariate marginal distribution and
captures dependence structure in the copula. Thus, copula theory fits the
common two-step practice: to analyze and model each component
(random variable) of the random vector individually, and, then proceed
with a joint analysis.

It is usually found that dependence structure of fracture direction-
length is complex, and can even depend on the resolution scale. There-
fore, it is needed a procedure to model a wide spectrum of dependencies
among random variables, not only the ones that are captured by corre-
lation coefficients (Pearson, Spearman, Kendall). From approximation
theory, Bernstein polynomials are a nonparametric approach that natu-
rally satisfy the properties of distribution functions and copulas.

With copulas, simulation is also a two-step procedure. First, uniform
random variables with the dependence structure are simulated, then the
objective random variables are obtained by the quantile function of the
univariate random variables modeled.

In summary, when there is dependence, the conceptual model con-
siders the following:

� periodicity in the univariate (marginal) distribution function of the
periodic variable,

� nonparametric marginal distributions,
� reduce or avoid transformation bias,
� can separate marginals modeling from the dependence structure,
� a nonparametric approach to model the dependence structure,
� periodicity in the copula density with respect to the directional
variable.
4.2. Mathematical model

Copulas are functions C : ½0; 1�2→½0;1� with distribution function
properties (Nelsen, 2006, p. 10) that became so popular because of the
Sklar's Theorem (1959): Let H be a joint distribution function with
continuous univariate margins F and G. Then there exists a unique
bivariate copula C such that for all x; y in ℝ,

Hðx; yÞ ¼ CðFðxÞ;GðyÞÞ (2)

One example of a copula is the product (or independent) copula CΠðu;
vÞ ¼ uv in which the corresponding univariate random variables U and V
are independent.

Sklar's theorem allows to model H in two independent steps. On one
side, the univariate marginal distributions F and G can be modeled one-
by-one. On the other side, the dependence structure can be modeled by a
copula C.

Inspired on the univariate empirical distribution function (Billingsley,



Fig. 1. Schematic representation of weights in which a discrete version of the copula
periodicity condition (Equation (7)) is seen in dark.
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1995, p. 268), one data-driven nonparametric approach would be to
model C as the empirical copula (Deheuvels, 1979),
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where n is the number of observations ðxk; ykÞ of a random vector ðX; YÞ,
i; j 2 f0; 1; …; ng, and 1 is the indicator function (Erdely and Díaz-
Viera, 2012).

One drawback of the empirical copula is the lack of continuity, but
one important advantage is that it is nonparametric. A short survey on
nonparametric copulas can be found on Joe (2014, sec. 5.10.3).

A nonparametric continuous version of the empirical copula can be
obtained if it is approximated by means of Bernstein polynomials. The
empirical Bernstein copula (Sancetta and Satchell, 2004) is defined as the
B�ezier surface in the form of a rectangular tensor product (Goldman,
2002, sec. 5.8.1)
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for every ðu; vÞ in the unit square I2 :¼ ½0;1� � ½0; 1�, and where cCn is
defined in Equation (3).

Sometimes the probability density function f is preferred instead of
the distribution function F. For example, for likelihood inference or for
constraints on the random variable density. One constraint on f can be the
periodicity for circular data (see Equation (1)).

In copula theory, given that C is an absolutely continuous copula, the
bivariate density function (Casella and Berger, 2002, sec. 4.1) is

fX;Y ðx; yÞ ¼ ∂2F
∂x∂y

¼ cðFXðxÞ;FYðyÞÞfXðxÞfYðyÞ (5)

where fXð⋅Þ and fY ð⋅Þ represent the continuous marginal density functions
and cð⋅; ⋅Þ (lower case) is the density function of the copula (also named
copula density),

cðu; vÞ ¼ ∂2C
∂u∂v

(6)
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for u :¼ FXðxÞ, v :¼ FY ðyÞ.
Constraints on the univariate margins translate to constraints on the

multivariate distribution functions and therefore to the copula. For
example, in modeling periodic-linear random vectors such as wind
direction-velocity or fracture direction-length, the periodicity condition
on the directional variable, u, gives (Carnicero et al., 2013)

cð0; vÞ ¼ cð1; vÞ (7)

for v 2 ½0;1�.
Some models satisfying this condition have been proposed, for

example (Johnson andWehrly, 1978), cðu; vÞ ¼ 2πhð2πðuþ vÞÞwhere hð⋅Þ
is a univariate circular density. Another example is one of Carnicero
et al. (2013).

Notice also that the independent copula density satisfies the period-
icity requirements since cΠðu; vÞ ¼ 1. From this last result, independence
for circular-linear variables will be tested as a distance to CΠ (Genest
et al., 2006, 2007; Genest and R�emillard, 2004). Such independence test
is available in the function indepTest of the copula R package (Hofert
et al., 2015; Marius Hofert and Martin Machler, 2011; Ivan Kojadinovic
and Jun Yan, 2010; Jun Yan, 2007).
4.3. Numerical model

The next discussion explains ideas from Carnicero et al. (2013)
regarding copulas for directional data. From equations (4) and (6) the
empirical Bernstein copula density is

cBðu; vÞ ¼
Xn
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Xn

j¼0

pijβðuji; n� iþ 1Þβðvjj; n� jþ 1Þ (8)

where βðxja; bÞ is the beta density function usually found in statistics, and
efficiently implemented in many software,

βðxja; bÞ ¼ 1
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a�1ð1� xÞb�1 (9)

where Bða; bÞ ¼ ða� 1Þ!ðb� 1Þ!=ðaþ b� 1Þ! and the weights are
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for i; j ¼ 1; …; n.
These weights pij, the coefficients of the polynomial function, are

equivalent to a two-dimensional histogram estimator in the domain I2 of
the copula (for details of the histogram estimator see Scott, 1992), i.e., if
the pseudo-observations are defined as ui :¼ FXðxiÞ and vi ¼ FY ðyiÞ, pij is
1=n times the number of points ðui; viÞ inside the rectangle ði� 1; i�=k�
ðj� 1; j�=k.

Once the copula density is available, if it is set that u corresponds to
the periodic variable, the periodic constraint (7) on the copula density is
satisfied when

p1j ¼ pkj (11)

For j ¼ 1; …; k, which will not in general be true. Carnicero et al.
(2013) suggest the following correction

p1j ¼ pkj ¼ p1j þ pkj
2

; j ¼ 1;…; k (12)

Fig. 1 illustrates the condition in (12) as shadowed bands, leaving the
white cells untouched. Such condition ensures a strictly continuous,
circular-linear estimated copula density.

With these weights can be computed a new empirical copula whose
”empirical copula density” is periodic. This new empirical copula can
then be used in (4) to approximate the copula.



Table 1
Parameters of the mixture of two von Mises distributions from which 400 directions where
sampled.

family proportion μ(�) κ

f0 0.3 0 10
f90 0.7 90 10
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Fig. 2. Discrete Fracture Network graphical representation of the (synthetic) dataset. The
10% largest fractures are highlighted in black.
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4.4. Simulation

Often, uncertainty assessment is made by means statistically equiva-
lent simulations. To simulate replications from the random vector (X,Y)
with the dependence structure inferred from the observed data, we use a
particular case of the conditional distribution method (Nelsen, 2006, sec.
2.9; Erdely and Díaz-Viera, 2012, sec. 2) in which each of the marginals X
and Y are a modeled with a nonparametric approach (Mu~noz P�erez and
Fern�andez-Palacín, 1987):

1. Generate two independent and continuous Uniform ð0;1Þ random
variates u and t.

2. Set v ¼ c�1
u ðtÞ. Where c�1

u is the inverse of cuðvÞ ¼ t ¼ ∂Cðu;vÞ
∂u .

3. If we estimate the quantile functions, Q and R, of X and Y by means of
Bernstein-Kantorovich polynomials (Mu~noz P�erez and Fern�andez-
Palacín, 1987), the simulated pair is ðx; yÞ ¼ ðQðuÞ; RðvÞÞ.

Being a polynomial, cuðvÞ is easily computed from (4). In contrast, the
inverse c�1

u ðtÞ have no analytic form, and must be solved numerically.
One approach can be to find the root v of GðvÞ :¼ t� cuðvÞ. The function
uniroot from the stats package finds such v.
Table 2
Circular statistics of the synthetic dataset directions.

Statistics value

Median 88.458�

μ 89.728�

Standard deviation 44.063
Skewness 0.045
4.5. Computational model

The methods in this article have been developed into a computer
code. The software used is R because it is a free multi-platform envi-
ronment for statistical computing and graphics, and is probably the most
widely used among statisticians and data miners. An R package (available
on request) has been developed for the results to be reproduced.

The periodic condition (11) is added to the copula matrix by taking
the average of the first and the last column (12), and such average is
assigned to each one of those columns.
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Although De Casteljau's algorithm is fast and stable for computing
multivariate Bernstein polynomials (Mainar and Pe~na, 2006), using the
tensor representation of a polynomial is closely related to applying the de
Casteljau's algorithm (Speleers, 2011). The tensor multiplication
approach has been implemented in this package since it is easy to
implement as a matrix outer multiplication.

5. Example: analysis, modeling and simulation of a synthetic
dataset

5.1. The synthetic dataset

Although the methodology is valid for any fracture system, in this
case it is studied a particular fracture network pattern broadly found in
the Earth crust. Because of lack of real fracture data, a synthetic dataset
has been generated according to geological knowledge:

Extension fracture: Fracture formed by extension perpendicular to the
fracture walls. The amount of extension can be minute, as for joints, or
can be larger, as for veins

Fossen (2010).

Shear joints commonly occur in conjugate sets … shear joints occur in
oblique conjugate sets whereas extension joints occur as longitudinal
and transverse joints forming an orthogonal pair

Singhal and Gupta (2010).

Further, some conjugate fracture systems have specific direction-
length relationships:

Miners refer to these two distinctive fracture directions as coal cleats:
a face cleat composed of long continuous dominant fractures (sys-
tematic joints) that extend for many meters horizontally; and a butt
cleat composed of shorter, somewhat more poorly developed fractures
that terminate at right angles against the face cleat (cross joints).

Davis et al. (2011).

From this structural geology knowledge, the fracture system synthetic
dataset must satisfy:

� have two families f0, f90 (angle distribution is bimodal) with f0 being
the dominant family,

� f90 with more fractures than f0,
� f90 fracture lengths shorter than f0.

We will refer to the dataset as the dataset, or synthetic dataset, and will
be considered as if it were real. The 400-fracture dataset is composed of
fracture centers x! lying inside the square given by the coordinates ð0; 0Þ
and ð400;400Þ, and simulated from a homogeneous Poisson process of
intensity¼ 1.0; fracture strikes sampled from a mixture of two von Mises
distributions (Table 1), angles varying in ½0;180Þ in a geographical co-
ordinate system (North ¼ 0�, East ¼ 90�); and fracture lengths simulated
from a lognormal distribution. Units of length correspond to the last
property but, without loss of generality, centimeters (cm) will be used for
fracture length. This length unit selection was motivated by the geolog-
ical background from the previous section (section 5.1) but any other
unit could have been chosen since it is known the scale invariance
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Fig. 3. Rose diagram of the dataset to be analyzed in which f0 is the N-S direction and f90
is in the E-W direction.

Table 3
Sample statistics of the synthetic dataset lengths.

Statistics value

Median 20.389 cm
Mean 26.186 cm
Standard deviation 20.894 cm
Skewness 1.914
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Fig. 4. Histogram of the synthetic dataset fracture lengths. Length ~

lognorm(meanlog ¼ 3.00, sdlog ¼ 0.73).
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Fig. 5. Empirical cumulative distribution function and its Bernstein-Kan
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characteristic of many fracture networks. As a result, the DFN to be
analyzed and modeled with the joint methodology is shown in Fig. 2. In
order to analyze the dependence relationship between direction and
length, fractures larger than 51 cm have been colored in black while the
lower fractures are in light blue. This cutoff was based on the 90th
percentile of the fracture length model, that is, about 10% percent of
fractures are black.

Directions were generated using the function rmixedvonmises of the
circular-R package (Agostinelli and Lund, 2013) with the parameters of
Table 1. Some of its circular statistics (computed with the same package)
are shown in Table 2. The circular mean (89.7�) is very similar to the
circular median (88.5�). Both statistics points very close to the family f90.
The very low skewness reveals that the distribution is highly symmetri-
cal. These results can also be observed in Fig. 3 which also shows that the
family f90 has a larger population than the horizontal family, as required
by the model.

Lengths were generated using the function rlnorm of the stats-R
package. The parameters of the lognormal distribution are meanlog ¼
3, sdlog ¼ 0:73, the mean and standard deviation of the distribution on
the log scale. The statistics in Table 3 show that the fracture mean and
median are close to the greater population, and the high positive skew-
ness value indicates little large fractures compared to small fractures. The
histogram Fig. 4 also shows a tiny second mode at about 70 cm.

Fig. 5 shows the empirical cumulative distribution function of both
direction and length. Although those data have very different behavior,
the Bernstein-Kantorovich quantile function has a tight fit. For the di-
rection, in this work it is preferred this flexibility over the periodic
constraint in parametric models like von Mises.

For the bivariate exploratory data analysis, it is shown in Fig. 6 the
direction-length scatterplot and its corresponding pseudo-observations
scatterplot (also, psobs or uv plot). One difference of these two plots is
that the former lies in the rectangle made up of the Cartesian product of
the range of the two random variables while the latter is a plot limited to
the square ½0;1� � ½0;1�.

Since the analysis of the uv plot is not standard, let's explain how it is
used. Values in the axes of the pseudo-observations plot (Fig. 6) corre-
sponds to probabilities of quantiles. For instance, in the horizontal axis,
the (median) angle 90� corresponds to u ¼ 0:5 while the 3rd quartile
corresponds to u ¼ 0:75, and the angle 0� (or 180�) to the value 0 (or 1
because of periodicity). Similarly for the vertical axis (lengths).

The psobs plot allows a visual overview of the dependence structure.
This way, it can be studied the effect of the pseudo-observations plot, or
equivalently the dependence structure, on the true scatterplot. The rank
correlation coefficient ρM ¼ 0:635, computed with the codes provided in
Tu (2015), suggests that the dataset is not independent.

A quantitative copula-based independent test can be carried out with
the function indepTest from the copula package. The synthetic dataset
gives a test statistic of 0.408 and a p-value of 5� 10�4, which means that
independence is rejected, so that it is worth to continue to model the
dependence structure.

Notice in the scatterplot that the main mean directions (0� and 90�)
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torovich model for the synthetic data. Left: Direction, right: Length.
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Fig. 6. Synthetic dataset Scatterplot of length vs angle (left), and its corresponding direction-length pseudo-observations plot (right).
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Fig. 7. Rose diagram of one simulation of the dataset. Compare with Fig. 3.

Table 4
Circular statistics of directions from one simulation of the dataset. Compare with Table 2.

Statistics value

Median 83.930�

μ 85.431�

Standard deviation 48.920
Skewness 0.166
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Fig. 8. Histogram of lengths from one simulation of the dataset. Compare with Fig. 4.
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show two modes, but in contrast to the rose diagram which shows the
same modes values, the higher mode corresponds to family f0. This
family does not allow fractures shorter than 18 cm. In contrast, near 90�,
there exits only small fractures and no large fracture is statistically
allowed. This phenomenon is due to the dependence structure shown in
the pseudo-observations plot. Notice also that there exist more small
fractures (say, below 51 cm) than large fractures all along inter-
val ½0; 180Þ.
Table 5
Sample statistics of lengths from one simulation of the dataset. Compare with Table 3.

Statistics value

Median 22.877 cm
Mean 29.400 cm
Standard deviation 23.930 cm
Skewness 1.752
5.2. The standard methodology

It is advised the distinction between the words synthetic and simu-
lated, we will use the former for the data analyzed and the later for the
data obtained by the methodology shown in this work. The data can only
be one dataset while there could be multiple simulations for a given
dataset. Following, it is shown the results of one simulation.
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In this section are shown the results when using the standard meth-
odology in which directions and angles are simulated independently
using the models of Fig. 6. For better comparison, the bin widths and
locations in the rose diagram of the synthetic (Fig. 3) and simulated
dataset (Fig. 7) are the same. For the bins in the histograms of lengths
applies an analogue case. Also to the plotting range of the scatterplots.

The rose diagram of the independent simulation (Fig. 7) looks with
less contrast in the modes and valleys, i. e., it seems that the model tries
to smooth the behavior. Different from this, the modes and valleys lo-
cations are satisfactorily reproduced. Even some subtle skewed parts are
reproduced. Its circular statistics (Table 4) reflects quantitatively that the
model has a good fit; however, the standard deviation seems to reinforce
the suspicion of the smoothing effect.

The independently simulated lengths were also reproduced. Notice
for instance that the valley at about 55 cm is reproduced in the histogram
(Fig. 8). The subtle mode at about 70 cm is showing too. On the quan-
titative side (Table 5), similar to the direction, the standard deviation is
larger than in the synthetic dataset. The median and the mean different
because of skewness as in the synthetic dataset but close to their corre-
sponding model values.

This agreement between the simulation and the dataset is also
observed in their closeness to the models (Fig. 9). This is the result of the
non-parametric property of the Bernstein-Kantorovich Quantile function.
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Fig. 10. Scatterplot and pseudo-observations plot of the dataset simulated with the standard methodology. Compare with Fig. 6.
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Notice, however, that in the bivariate case (Fig. 10) the modeling
were not as satisfactorily as in the univariate case. The points in the
scatterplot and in the pseudo-observations plot are more disperse. The
correlation coefficient is also clearly different (ρM ¼ 0:016). Neither the
scatterplot nor the uv plot show the bivariate structure. The reason: it was
not considered in the simulation. The standard methodology produces
results like this one, and the pseudo-observations plot will tend to be
uniform as in the right of Fig. 10.

The resulting DFN (Fig. 11) pays the price by showing the 10% largest
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Fig. 11. DFN of one independent simulation of the dataset. Compare with Fig. 2.
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fractures not as vertically as observed in Fig. 2, but, to the contrary, now
there seems to be more large fractures in the E-W direction than in the
vertical direction.

5.3. The Bernstein copula approach

The methodology in this work does consider the bivariate structure
through the Bernstein copula of the pseudo-observations in Fig. 6. With
this copula model, new simulated pseudo-observations (Fig. 12, left)
were sampled using steps 1 and 2 of the simulation algorithm section 4.4.
Then the simulated direction-length values (Fig. 12, right) were obtained
by the step 3 in which the quantile functions are the ones shown in Fig. 6.

The power of copula theory allowed to have the same marginals
values as in the independent case, i. e., the rose diagram, the length
histogram and the statistics are exactly the same as in the independent
case section. The difference is in the dependence structure. Fig. 12 shows
the scatterplots. Notice the contrast with the independent case and the
agreement with the synthetic dataset. Quantitatively, the rank correla-
tion coefficient (ρM ¼ 0:571) also agrees with the dataset.

The corresponding DFN shows, as in the synthetic dataset, that there
is a preference of the largest fractures for the vertical direction. Never-
theless, there is the possibility of getting non-vertical large fractures.

6. Results and discussion

Although by construction, the univariate nonparametric approach to
model the marginal distribution of direction is not periodic, it mimics
pretty well the periodic behavior of fracture directions (See Fig. 7 and
Table 4), and even shows the skewed parts in the rose diagram. For
lengths, it is also observed a coherent match between data and simulation
(See Fig. 8 and Table 5).

On the bivariate case, in Fig. 12 it is shown that the Bernstein copula
approach reproduces tightly the dependence structure of direction and
length: small fractures correspond to family f90 (Uangle ¼ 0:5) and large
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Fig. 12. Scatterplot and pseudo-observations plot of the dataset simulated with the copula methodology. Compare with Fig. 6 and with Fig. 10.
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fractures to f0. The method also shows a very good agreement even in the
subtle characteristic that there is almost no probability of getting very
small fractures for the angle 0�, (Uangle ¼ 0 and Vlength <0:2).

On the contrary, the standard methodology produces results totally
different. In this example there is a larger population of the largest
fractures in the E-W direction than in the N-S direction. Further, very
small fractures appears in the N-S direction, but in synthetic dataset there
are no fractures of length less than 18 cm.

Notice also that there is also a good correspondence of the DFN
(Fig. 2) and the simulated DFN (Fig. 13) that takes into account the
dependence structure. In general, all the variables involved are well
reproduced, both graphically and in its descriptive statistics, and both
marginally and jointly.

Unforeseen, it can be observed in the rose diagram (Fig. 7) and in the
scatterplot (Fig. 12) that angles are apparently a little more diffused in
simulations than in the data. This effect could be due to Bernstein
polynomials which have a smoothing effect or it could be just an effect of
this unique simulation, other simulations could not show such effect.

Because fracture size and directions are very important in reservoir
fluid flow paths, and to estimate percolation properties of a given fracture
system, this methodology is much better than omitting such
dependencies.

Although there exists a multivariate approach for Bernstein copulas
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Fig. 13. DFN of one Bernstein copula-based simulation of the dataset. Compare with
Fig. 2 and with Fig. 13.
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(Wei and Scheffer, 2012), the bivariate case in this work is restrictive in
the number of variables: two. Another case worth considering is the
spatial dependence of intensity on fracture properties.

7. Conclusions and future work

In contrast to the restrictive assumption of linear or log-linear rela-
tionship between variables, the Bernstein copula approach allows to
statistically investigate complex dependence structures driven by
observed data (direction-length in this work) in a very flexible fashion. In
particular, the periodic condition of Carnicero et al. (2013) extends the
approach to include variables such as fracture direction.

Using a copula approach for the dependence structure allows to avoid
the bias produced when transforming random variables involved in
simulations, for example log-transforming length.

The nonparametric approaches used for the marginal distributions
and the copula allowed a very good match of a simulation of a DFN even
in the presence of distributional skewness. This will allow to estimate,
through simulation analysis, more realistic percolation properties of
fracture systems. Another advantage with this nonparametric approach is
the ease of use since no maximum likelihood or goodness-of-fit test
is required.

With the methodology of this work, the only dependence missing to
model is the relationship between spatial location and fracture properties
(direction-length).

Immediate future work could be executed on the simplest multivar-
iate case: three-variate case in which two of them are independent. For
example, modeling direction-length-aperture, and allowing direction-
aperture be independent.
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